Skip to main content

Thermal Power Plant : Principle, Parts, Working, Advantages and Disadvantages

Basic Introduction or Principle: We all are aware with the term "Generator". A device which converts mechanical energy into electrical energy is known as generator. This generator makes rotate with the help of some kind of external energy. When this energy extract from the energy of steam, the plant is known as steam power plant.  A simple steam plant works on Rankine cycle. In the first step, water is feed into a boiler at a very high pressure by BFP (boiler feed pump). This high pressurized water is heated into a  boiler   which converts it into high pressurized super heated steam. This high energized steam passes through steam  turbine  (a mechanical device which converts flow energy of fluid into mechanical energy) and rotate it. Owing to extract full energy of steam, three stage turbines is used which is known as LPT (Low pressure turbine), IPT (intermediate pressure turbine) and HPT (High pressure turbine). The turbine shaft is connected to the generator rot

ABS Technology : Antilock Braking System

ABS Technology:

Requirement of ABS Technology:

We know that when we applied brake, it pushes the brake pad on running drum or disk. For heavy loaded vehicle we need to high braking force to stop of slow down the vehicle. This braking force generate by some means like hydraulic pressure, Air pressure etc. When the vehicle is running and we want to stop the vehicle we push the brake pedal. Due to excessive braking causes skidding. This skidding jam the wheel but due to inertia the vehicle tends to skid on the road and it became out of control from driver. This is called locking of the wheel.

This is understood by that when we run on the floor and eventually tends to stop we slip down on it. This is exactly true for the vehicle. This type of locking is harmful for driving and may cause accident. So we have to remove it use of a new safety system. This system is called ABS.

Working of ABS Technology:

We have been already explained how locking of road wheels due to excessive braking causes skidding. Modern antilock brake systems not only cause the vehicle to stop without deviating from its straight line path, these also provide directional stability since there is no skidding of the wheels.
Skidding is avoided by releasing the braking pressure just before the wheels lock up, and then reapplying the same. These releasing and reapplying the brakes in succession is what an antilock system does and this process is called pressure modulation. This system can modulate the pressure to the brakes about 15 times per second.  The feel of brake pedal in case of ABS equipped brakes is quite similar to that of conventional power brake system. 


A ABS consist of an electronic control unit, one sensor on each wheel, an electrically driven hydraulic pump and a pressure accumulator. Accumulator is used to store hydraulic fluid to maintain high pressure in the braking system and to provide residual pressure for power assisted braking. ECU monitors and controls the antilock function when required. Its function is based on inputs from the wheel speed sensors and feedback from the hydraulic unit to determine whether the ABS is operating precisely and also to decide when the antilock operation is required. In some antilock braking system, a lateral acceleration sensor is also provided to monitor the side movement of the vehicle while taking a turn. This ensures proper braking during turns also.
When the front wheels of vehicle are locked, its maneuverability is reduced, whereas in case of rear wheel locking, the vehicle stability is reduced. ABS calculates the required slip rate of the wheels accurately based on the vehicle speed and the speed of the wheels and then controls the brake fluid pressure to achieve the target slip rate. Although ABS prevents complete locking of the wheel.
ABS is manufactured by Bendix, Delco Moraine, Kelsey-Hayes Lucas Girling, Bosch etc. 

Comments

Popular posts from this blog

New imaging technique could detect acoustically 'invisible' cracks

The next generation of aircraft could be thinner and lighter thanks to the development of a new imaging technique that could detect damage previously invisible to acoustic imaging systems. The nonlinear acoustic technique developed by researchers from the University of Bristol's Ultrasonics and Non-destructive Testing (NDT) research group is published in the current issue of  Physical Review Letters  together with an accompanying article in  Physics . It has long been understood that acoustic nonlinearity is sensitive to many physical properties including material microstructure and mechanical damage. The lack of effective imaging has, however, held back the use of this important method. Currently engineers are able to produce images of the interior of components using ultrasound, but can only detect large problems such as cracks. This is like detecting only broken bones in a medical environment. Imaging of acoustic nonlinearity is achieved by exploiting differences in

Main Parts of an Internal Combustion Engine

Today we will learn about main parts of an engine. An internal combustion engine is the engine in which combustion (burning of fuel) takes place inside the cylinder of engine. By burning of the fuel high temperature and pressure force generates. This pressure force use to move the vehicle or rotate wheels by use of some mechanism. In an engine many parts work together and achieve the goal of converting chemical energy of fuel into mechanical energy. These parts are bolted together and the combination of all these parts is known as engine. Today I am going to tell you about these parts and how they work so you can know the basic of automobile engine. Main Parts of an Internal Combustion Engine: 1. Cylinder block Cylinder is the main body of IC engine. Cylinder is a part in which the intake of fuel, compression of fuel and burning of fuel take place. The main function of cylinder is to guide the piston. It is in direct contact with the products of combustion so it must b

Pedal Operated Hacksaw

Pedal Operated Hacksaw Operating a hacksaw manually is a very tiring and time consuming task. It requires a lot of manual effort and delivers uneven cutting. Operating a electrical hacksaw does deliver good results but consumes a lot of energy. So here we propose a semi automated hacksaw using pedal power. Here we design and fabricate a hacksaw that is run by pedal power and achieves even cutting with very less efforts. Here we use a chain sprocket arrangement to transfer power from pedals to hacksaw. A strong and firm base frame allows for efficient power transfer between the system. We use bearings and mounts to mount and setup the entire system and ensure a smooth circular motion of pedals. Now we attach a hub to the other sprocket. This hub is connected with a connecting rod which moves with the hub in order to produce a lateral motion. We now develop a supporting frame and connect a saw to the other end in order to achieve desired cutting movement of saw. We also attach